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ABSTRACT

The recently suggested swing interaction be-
tween fast magnetosonic and Alfvén waves
(Zaqarashvili & Roberts, 2002a) is generalized
to inhomogeneous media. We show that the fast
magnetosonic waves propagating across an applied
non-uniform magnetic field can parametrically
amplify the Alfvén waves propagating along the field
through the periodical variation of the Alfvén speed.
The resonant Alfvén waves have half the frequency
and the perpendicular velocity polarization of the
fast waves. The wavelengths of the resonant waves
have different values across the magnetic field, due
to the inhomogeneity in the Alfvén speed. There-
fore, if the medium is bounded along the magnetic
field, then the harmonics of the Alfvén waves, which
satisfy the condition for onset of a standing pattern,
have stronger growth rates. In these regions the
fast magnetosonic waves can be strongly ‘absorbed’,
their energy going in transversal Alfvén waves. We
refer to this phenomenon as ‘Swing Absorption’.
This mechanism can be of importance in various
astrophysical situations.
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1. INTRODUCTION

Wave motions play an important role in many
astrophysical phenomena. Magnetohydrodynamic
(MHD) waves may transport momentum and energy,
resulting in heating and acceleration of an ambient
plasma. A variety of waves have recently been de-
tected in the solar atmosphere using the SOHO and
TRACE spacecraft. Hence, an understanding of the
basic physical mechanisms of excitation, damping
and the interaction between the different kinds of
MHD wave modes is of increasing interest (Roberts,
2004). Formally speaking, there is a group of di-
rect mechanisms of wave excitation by external forces
(e.g. turbulent convection, explosive events in stel-
lar atmospheres, etc.) and wave dissipation due
to non-adiabatic processes in a medium (such as
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viscosity, thermal conduction, magnetic resistivity,
etc.). There is a separate group of wave amplifica-
tion and damping processes due to resonant mech-
anisms (Goossens, 1991; Poedts, 2002). This means
that particular wave modes may be damped (ampli-
fied) due to energy transfer (extraction) into or from
other kinds of oscillatory motions, even when wave
dissipation is excluded from consideration.

Recently, a new kind of interaction between dif-
ferent MHD wave modes, based on a paramet-
ric action, has been suggested (Zaqarashvili, 2001;
Zaqarashvili & Roberts, 2002a,b; Zaqarashvili et al.,
2002, 2004). In this case the mechanism of wave
interaction originates from a basic physical phe-
nomenon known in classical mechanics as ‘paramet-
ric resonance’, occurring when an external force (or
oscillation) amplifies the oscillation through a pe-
riodical variation of the system’s parameters. The
mechanical analogy of this phenomenon is a mathe-
matical pendulum with periodically varying length.
When the frequency of the length variation is twice
the frequency of the pendulum oscillation, the ampli-
tude of the oscillation grows exponentially in time.
Such a mechanical system can consist of a pendulum
(transversal oscillations) with a spring (longitudinal
oscillations). A detailed description of such a me-
chanical system is given in Zaqarashvili & Roberts
(2002a) (hereinafter referred to as Paper I).

Here we present a brief report on our recent results
on swing interactions of fast and Alfvén modes in
inhomogeneous media (Shergelashvili et al. (2004)).

2. BASIC EQUATIONS AND EQUILIB-
RIUM MODEL

Consider a magnetized medium with zero viscosity
and infinite conductivity, where processes are as-
sumed to be adiabatic. Then the macroscopic dy-
namical behaviour of this medium is governed by the
ideal magnetohydrodynamic (MHD) equations:

∂ρ

∂t
+ ~∇·(ρ~U) = 0, (1)
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Figure 1. Schematic view of the inhomogeneous back-
ground configuration and the directions of wave prop-
agation (polarization).
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∂p

∂t
+

(

~U · ~∇
)

p =
γp

ρ

(

∂ρ

∂t
+

(

~U · ~∇
)

ρ

)

, (4)

where p and ρ are the plasma pressure and density,
~U is the velocity, ~B is the magnetic field of strength
B = |B| and γ denotes the ratio of specific heats.

We consider an equilibrium magnetic field directed
along the z axis of a Cartesian coordinate system,
~B0 = (0, 0, B0(x)). The equilibrium magnetic field
~B0 and density ρ0 are inhomogeneous in x. The force
balance condition, from Eq. (2), gives the total (ther-
mal + magnetic) pressure in the equilibrium to be a
constant:

p0(x) +
B2

0(x)

8π
= constant. (5)

Also, the equation of state

p0(x) = p0(T0(x), ρ0(x)), (6)

relates the unperturbed pressure, density ρ0(x) and
temperature T0(x).

Eqs. (1)-(4) are linearized around the static ( ~U0 = 0)
equilibrium state (5). This enables the study of the
linear dynamics of magnetosonic and Alfvén waves.
A schematic view of the equilibrium configuration is
shown in Figure 1.

3. FAST MAGNETOSONIC WAVES

Now let us consider the propagation of ’‘pure’ fast
magnetosonic waves across the magnetic flux sur-
faces, i.e. along the x axis, taking ~u = (ux, 0, 0) and

∂/∂y ≡ 0, ∂/∂z ≡ 0. The equation governing the
dynamics of fast magnetosonic waves propagating
across the magnetic field lines in the inhomogeneous
medium can be obtained from equations (1)-(4) as
(Roberts, 1981, 1991):

d

dx

[(

γp0(x) +
B2

0(x)

4π

)

du(x)

dx

]

+ ω2ρ0(x)u(x) = 0.

(7)
where ux is the velocity perturbation.

The solution of this equation for different particular
equilibrium conditions can be obtained either ana-
lytically or numerically. Equation (7) describes the
propagation of a fast wave with speed (C2

s + V 2
A)1/2,

where Cs = (γp0/ρ0)
1/2 is the sound speed and

VA = (B2
0/4πρ0)

1/2 is the Alfvén speed.

We study Eq. (7) in accordance with the boundary
conditions:

u(0) = u(Lx) = 0, (8)

corresponding to fast waves bounded by walls located
at x = 0 and x = Lx. These boundary conditions
make the spectrum of fast modes discrete: Eq. (7)
has a nontrivial solution only for a discrete set of
frequencies,

ω = ωn = ω0, ω1, . . . . (9)

In this case the solutions for different physical quan-
tities can be represented as

ux = αv(x) sin(ωnt), ρ1 = αr(x) cos(ωnt),

bz = αh(x) cos(ωnt), (10)

where the density and magnetic field perturbations
are related to the velocity perturbations through

r(x) =
1

ωn

(

v(x)
dρ0

dx
+ ρ0

dv(x)

dx

)

, (11)

h(x) =
1

ωn

(

v(x)
dB0

dx
+ B0

dv(x)

dx

)

. (12)

Here (and subsequently) we use a subscript n to de-
note the frequency of a given standing fast mode.

4. SWING AMPLIFICATION OF
ALFVÉN WAVES

Now consider Alfvén waves that are linearly polar-
ized in the y direction and propagate along the mag-
netic field (see Figure 1). In the linear limit these
waves are decoupled from the magnetosonic waves
and the equation governing their dynamics is:

∂2by

∂t2
− V 2

A(x)
∂2by

∂z2
= 0, (13)

where VA(x) is Alfvén speed. It is clear from Eq. (13)
that the phase speed of this mode depends on x para-
metrically. Therefore, an Alfvén wave with a given
wave length propagates with a ’‘local’ characteristic
frequency. Each magnetic flux surface can evolve in-
dependently in this perturbation mode.



4.1 Propagating Alfvén waves

Let us now address the non-linear action of the fast
magnetosonic waves, considered in the previous sec-
tion, on Alfvén waves. We study the weakly non-
linear regime. This means that the amplitudes of the
fast magnetosonic waves are considered to be large
enough to produce significant variations of the en-
vironment parameters, which can be felt by prop-
agating Alfvén modes, but too small to affect the
Alfvén modes themselves. Hence, the magnetic flux
surfaces can still evolve independently. Therefore,
as in paper I, the non-linear terms in the equa-
tions arising from the advective derivatives ux∂by/∂x
and (ρ0 + ρ1) ux∂uy/∂x are assumed to be negligi-
ble. Under these circumstances the governing set of
equations takes the form (see Paper I):

∂by

∂t
= (B0 + bz)

∂uy

∂z
− ∂ux

∂x
by, (14)

(ρ0 + ρ1)
∂uy

∂t
=

B0 + bz

4π

∂by

∂z
. (15)

These equations describe the parametric influence of
fast magnetosonic waves propagating across the mag-
netic field on Alfvén waves propagating along the
field. An analytical solution of Eqs. (14) and (15) is
possible for a standing pattern of fast magnetosonic
waves, the medium being assumed bounded in the x
direction.

Combining Eqs. (14) and (15) we obtain the follow-
ing second order partial differential equation:

∂2by

∂t2
+

[

∂ux

∂x
− 1

B0 + bz

∂bz

∂t

]

∂by

∂t
+

+

(

∂2ux

∂t∂x
− 1

B0 + bz

∂bz

∂t

∂ux

∂x

)

by−
(B0 + bz)

2

4π (ρ0 + ρ1)

∂2by

∂z2
= 0.

(16)
Writing

by = hy(z, t) exp

[

−1

2

∫
(

∂ux

∂x
− 1

B0 + bz

∂bz

∂t

)

dt

]

,

(17)
we obtain

∂2hy

∂t2
+

1

2
[S1(x, t) − S2(x, t)] hy −S3(x, t)

∂2hy

∂z2
= 0,

(18)
where,

S1 =
∂2ux

∂t∂x
+

1

B0 + bz

∂2bz

∂t2
, (19)

S2 =
1

(B0 + bz)
2

(

∂bz

∂t

)2

+
1

2

[

∂ux

∂x
+

1

B0 + bz

∂bz

∂t

]2

,

(20)

S3 =
(B0 + bz)

2

4π (ρ0 + ρ1)
. (21)

Finally, applying a Fourier analysis with respect to
the z coordinate,

hy(z, t) =

∫

ĥy(kz , t)e
ikzzdkz, (22)

and neglecting the second and higher order terms in
α, we obtain the following Mathieu-type equation:

∂2ĥy

∂t2
+ k2

zV 2
A [1 + αF (x) cos(ωnt)] ĥy = 0, (23)

where

F (x) = 2
h(x)

B0
− r(x)

ρ0
− v(x)

ωn

2k2
zV

2
A

1

B0

dB0

dx
. (24)

It should be noted that the expression (20) for
S2(x, t) consists only of terms of second order and
higher in α, and so can be neglected directly for the
case of weakly non-linear action addressed here.

Equation (23) has a resonant solution when the fre-
quency of the Alfvén mode ωA is half of ωn:

ωA = kzVA(x) ≈ 1

2
ωn. (25)

This solution can be expressed as

ĥy(kz , t) = ĥy(kz , t = 0)e
|δ|

2ωn
t
[

cos
ωn

2
t − sin

ωn

2
t
]

,

(26)
where

δ(x) = αk2
zV 2

A(x)F (x). (27)

The solution has a resonant nature within the fre-
quency interval

∣

∣

∣
ωA − ωn

2

∣

∣

∣
<

∣

∣

∣

∣

δ

ωn

∣

∣

∣

∣

. (28)

Similar expressions have been obtained in the Pa-
per I for a homogeneous medium. In that case, the
Alfvén speed is constant and, therefore, the fast mag-
netosonic waves amplify the Alfvén waves with the
same wavelength everywhere. In the case of an in-
homogeneous Alfvén speed, the resonance condition
(25) implies that the wavelength of the resonant har-
monics of the Alfvén waves depends on x. This
means that the fast magnetosonic waves now am-
plify Alfvén waves with different wavelengths (but
with the same frequency) in different magnetic flux
surfaces (i.e., different x-values).

4.2 Standing Alfvén waves

When we consider a system that is bounded in the z
direction, the boundary conditions along the z axis
introduce an additional quantization of the wave pa-
rameters. In particular, in this case each spatial har-
monic of the Alfvén mode can be represented as

ĥm
y = ĥy(km, t) cos(kmz), (29)



where km = πm/Lz (m = 1, 2, . . .) and Lz is the
characteristic length of the system in the z direction.
This then leads to a further localization of the spatial
region where the swing transfer of wave energy from
longitudinal to transversal oscillations is permitted.
The resonant condition (25) implies that

kmVA(xn,m) ≈ 1

2
ωn. (30)

Therefore, the resonant areas are concentrated
around the points xn,m for which condition (30)
holds. Within these resonant areas the longitudi-
nal oscillations damp effectively and their energy
is transferred to transversal oscillations with wave
numbers kz = km satisfying the resonant conditions.
These resonant areas are localized in space and can
be referred to as regions of swing absorption of the
fast magnetosonic oscillations of the system. The
particular feature of this process is that the energy
transfer of fast magnetosonic waves to Alfvén waves
occurs at half the frequency of the fast waves.

5. NUMERICAL SIMULATION

In this section we consider in detail the process of
swing absorption of fast waves into Alfvén waves.
We consider a numerical study of equation (7) sub-
ject to the boundary conditions (8). We study, as
an example, the case of a polytropic plasma when
both the thermal and magnetic pressures are linear
functions of the x coordinate:

p0 = p00 + p01
x

Lx
, (31)

ρ0 = C2

(

p00 + p01
x

Lx

)
1

γ

, (32)

B0 =

√

h00 + h01
x

Lx
, (33)

where, p00, p01, h00, h01 and C are constants, and
Lx denotes the length of the system along the x di-
rection. The pressure balance condition (5) immedi-
ately yields

p01 = −h01

8π
. (34)

The solution of the wave equation depends on the
values of the above set of constant parameters. In
general, different equilibrium regimes can be consid-
ered including those corresponding to different limits
of the plasma β: β ≪ 1, β ≈ 1 and β ≫ 1. The
values of all constant parameters are given in Ta-
ble 1. We took arbitrary values of parameters, but
they are somewhat appropriate to the magnetically
dominated solar atmosphere (say the chromospheric
network). In Figure 2 we show the profiles of αv(x)
for the standing wave solutions, for two cases with
different modal ‘wavelength’. Panels A and B, re-
spectively, correspond to the characteristic frequen-
cies: ω0 ≈ 1.87 · 10−2 s−1 (period 5.61 min) and
ω2 ≈ 5.66 · 10−2 s−1 (period 1.85 min).

p00 dyn/cm2 p01 dyn/cm2 h00 G2 h01 G2

100 -70 104 1.7593 · 103

Lx km Lz km C γ
15000 6.5 · Lx 10−6 5/3

Table 1. Values of the constant parameters used in
the calculation of our illustrative solutions. The di-
mension of C is g1/2cm(2−3γ)/2γ/dyn1/2γ

.

For the configuration described by the equilibrium
profiles (31) - (33) the resonant condition (30) yields
the areas of swing absorption (located along the x
axis) as the solutions of the following equation:

ωnC

(

p00 + p01
xn,m

Lx

)
1

2γ

− km√
π

√

h00 + h01
xn,m

Lx
= 0.

(35)
In Figure 3 (panels A1 and A2) we plot

F1 =
∣

∣

∣

ωn

2
− kmVA

∣

∣

∣
(36)

(solid line) and

F2 =

∣

∣

∣

∣

δ(x)

ωn

∣

∣

∣

∣

(37)

(dotted line) against the normalized coordinate
x/Lx. These curves correspond to the zeroth-order
harmonic of the fast magnetosonic mode shown in
Figure 2 (panel A) and the standing Alfvén mode
with wave numbers m = 3 (panel A1) and m = 4
(panel A2).

In order to examine the validity of the approxima-
tions we made during the analysis of the govern-
ing equation (18), we performed a direct numeri-
cal solution of the set of equations (14) - (15) and
obtained the following results. The Alfvén mode
m = 3 is amplified effectively close to the resonant
point x/Lx ≈ x0,3/Lx = 0.7967. This is shown
on panel C1 of Figure 3. Far from this resonant
point, the swing interaction is weaker, as at the point
x/Lx ≈ x0,4/Lx = 0.0767 (panel B1). For the Alfvén
mode m = 4 we have the opposite picture: the area of
‘swing absorption’ is situated around the point x0,4

(see panel B2, Figure 3) and the rate of interaction
between modes decreases far from this area, as at
point x0,3 (panel C2, Figure 3). In these calculations
we took α = 0.015.

Similar results are obtained for the fast magnetosonic
mode shown in panel B of Figure 2, corresponding to
α = 0.03. In this case, the fast magnetosonic mode
effectively amplifies four different spatial harmonics
of Alfvén modes, viz. m = 8, 10, 11 and 12 (for details
see Shergelashvili et al. 2004). A similar analysis
can be performed for the case of any other equilib-
rium configuration and corresponding harmonics of
the standing fast magnetosonic modes.
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Figure 3. The swing absorption of the fast mode n = 0 by the standing Alfvén modes m = 3 and 4.



6. DISCUSSION AND CONCLUSION

The most important characteristic of swing absorp-
tion is that the velocity polarization of the amplified
Alfvén wave is strictly perpendicular to the veloc-
ity polarization (and propagation direction) of fast
magnetosonic waves. This is due to the parametric
nature of the interaction. For comparison, the well-
known resonant absorption of a fast magnetosonic
wave can take place only when it does not propagate
strictly perpendicular to the magnetic flux surfaces
and the plane of the Alfvén wave polarization. In
other words, the energy in fast magnetosonic waves
propagating strictly perpendicular (i.e. k⊥ = 0) to
the magnetic flux surfaces cannot be resonantly ‘ab-
sorbed’ by Alfvén waves with the same frequency
polarized in the perpendicular plane. This is be-
cause the mechanism of resonant absorption is anal-
ogous to the mechanical pendulum undergoing the
direct action of an external periodic force. This force
may resonantly amplify only those oscillations that
at least partly lie in the plane of force. On the con-
trary, the external periodic force acting parametri-
cally on the pendulum length may amplify the pen-
dulum oscillation in any plane. A similar process
occurs when the fast magnetosonic wave propagates
across the unperturbed magnetic field. It causes a
periodical variation of the local Alfvén speed and
thus affects the propagation properties of the Alfvén
waves. As a result, those particular harmonics of
the Alfvén waves that satisfy the resonant conditions
grow exponentially in time. These resonant harmon-
ics are polarized perpendicular to the fast magne-
tosonic waves and have half the frequency of these
waves. Hence, for standing fast magnetosonic waves
with frequency ωn, the resonant Alfvén waves have
frequency ∼ωn/2.

In a homogeneous medium all resonant harmonics
have the same wavelengths (see Paper I). Therefore,
once a given harmonic of the fast and Alfvén modes
satisfies the appropriate resonant conditions (Eqs.
(23) and (25) in Paper I), then these conditions are
met within the entire medium. Thus, in a homo-
geneous medium the region where fast modes effec-
tively interact with the corresponding Alfvén waves
is not localized, but instead covers the entire sys-
tem. However, when the equilibrium is inhomoge-
neous across the applied magnetic field, the wave-
lengths of the resonant harmonics depend on the
local Alfvén speed. When the medium is bounded
along the unperturbed magnetic field (i.e. along the z
axis), the resonant harmonics of the standing Alfvén
waves (whose wavelengths satisfy condition (30) for
the onset of a standing pattern) will have stronger
growth rates. This means that the ‘absorption’ of
fast waves will be stronger at particular locations
across the magnetic field. In the previous section we
showed numerical solutions of standing fast magne-
tosonic modes for a polytropic equilibrium (p0 ∼ ργ

0)
in which the thermal pressure and magnetic pres-
sure are linear functions of x. Further, we performed

a numerical simulation of the energy transfer from
fast magnetosonic waves into Alfvén waves at the
resonant locations, i.e. the regions of swing absorp-
tion.

The mechanism of swing absorption can be of impor-
tance in a variety of astrophysical situations.
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